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Abstract. We classify (1+3)-dimensional Fokker—Planck equations with a constant diagonal
diffusion matrix that are solvable by the method of separation of variables. As a result, we
get possible forms of the drift coefficient®; (¥), B2(X), B3(X) providing separability of the
corresponding Fokker—Planck equations and carry out variable separation in the latter. It is
established, in particular, that the necessary condition for the Fokker—Planck equation to be
separable is that the drift coefficiengx) must be linear. We also find the necessary condition for
R-separability of the Fokker—Planck equation. Furthermore, exact solutions of the Fokker—Planck
equation with separated variables are constructed.

1. Introduction

Diffusion processes play an important role in different fields of physics, chemistry and
biology [1, 2] and have very broad applications in technics. For example, they play a decisive
role in electronics [1]. Thatis why analytical solutions of diffusion equations were, are and will
be of great importance for applications, since they provide new insights into the nature of the
diffusion processes described by the equations in question. As an example, let us mention the
famous Black—Scholes models, whose success is based, in particular, on an analytical solution
constructed in an explicit form.

Unfortunately, the diffusion (Fokker—Planck) equations that are used in applications, have
variable coefficients and cannot be integrated by the standard Fourier transform method. In
fact, the only available efficient way for constructing analytical solutions of partial differential
equations (PDEs) with variable coefficients is the method of separation of variables.

The simplest and most widely used in applications is the case of the constant diffusion
matrix. Therefore the principal object of the study in the present paperis a problem of separation
of variables in the Fokker—Planck equation (FPE) [3] with a constant diagonal diffusion matrix

U+ Au+ (By(¥)u)y, =0 1)

where B(¥) = (B1(X), Bo(¥), Bs(¥)) is the drift velocity vector. Herer = u(t,x) and
B;(X), i = 1,2, 3 are smooth real-valued functions. Hereafter, the subsggipmplies
partial differentiation and, moreover, summation over the repeated Latin indices from 1 to 3
is understood. The matrix of the constant diffusion coefficients is reduced to the unit matrix
by proper simple transformation.
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In the present paper we solve the problem of variable separation in FPE (1) into second-
order ordinary differential equations (ODES) in a sense that we obtain possible forms of the
drift coefficientsB; (x), B>(X), Bs(X) providing separability of (1). Furthermore, we construct
inequivalent coordinate systems enabling us to separate variables in the corresponding FPEs
and carry out variable separation.

The separability criteria for the one-dimensional FPE have been obtained in [4].

The problem of variable separation in the three-dimensional FPE was considered in a
restricted sense by Sukhomlin in [5]. He used the symmetry approach which is based on
the well known fact that a solution with separated variables is a common eigenfunction of
three first- or second-order differential operators which commute with each other and with the
operator of the equation under consideration (see [6] and references therein). Sukhomlin has
obtained some drift coefficients providing separability of FPE (1) and carried out separation
of variables in the latter. His results, however, are far from being complete and systematic.

Ouranalysisis based onthe direct approach to variable separationinlinear PDEs suggested
in [7-9]. It has been successfully applied to solving the variable separation problem in the
wave [7] and Sclirdinger equations [8—12] with variable coefficients.

2. Separation of variables in the Fokker—Planck equation

Let us formulate briefly the algorithm of variable separation in FPE (1) following [9].
We say that FPE (1) is separable in a coordinate system = w,(t, X),a = 1, 2, 3 if
the separation ansatz

3
u(t, ¥) = go(1) [ | pal@alt, %), 1) 2
a=1
reduces PDE (1) to four ODEs for the functions (uw = 0, 1, 2, 3):
05 = Uol(t, ¢o; 1) 0! = Ua(@a, Pus 93 1) 3)
Here Uy, ..., U3 are some smooth functions of the indicated variables; (A1, Ao, A3) €

A = {an open domain iiR3} are separation constants (spectral parameters, eigenvalues) and,
what is more,

U, 3 3
9 -3 4)

rank H
n=0a=1

a

The above condition secures essential dependence of a solution with separated variables on
the separation constarits
The principal steps of the procedure of variable separation in FPE (1) are as follows:

(1) We insert the ansatz (2) into FPE and express the derivagjyes', ¢;, 5 in terms of
functionseo, @1, @2, @3, @1, ¥, @5 USiNg equations (3).

(2) We regard go, @1, 92, 03, ¢, ¢5, 95, A1, A2, Az as the new independent variables
y1, ..., y10- As the functionsw;, wy, w3z are independent of the variables, . . ., yiq,
we can split by these variables and get an over-determined system of nonlinear PDEs for
unknown functionsvy, w,, ws.

(3) After solving the above system we obtain an exhaustive description of coordinate systems
providing separability of FPE.

Having performed the first two steps of the above algorithm we arrive at the conclusion
that the separation equations (3) are linear botpyin. ., ¢3 andiy, A2, As.
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Next, we introduce an equivalence relatiban the set of all coordinate systems providing
separability of FPE. We say that two coordinate systems, w,, w3 andz, @1, @o, @3 are
equivalentf the corresponding ansatze (2) are transformed one into another by the invertible
transformations of the form

t— 1= fot) w; = o = fi(w;) )

where fo, ..., f3 are some smooth functions and= 1, 2, 3. These equivalent coordinate
systems give rise to the same solution with separated variables, therefore we shall not
distinguish between them. The equivalence relation (5) splits the set of all possible coordinate
systems into equivalence classes. In what follows, when presenting the lists of coordinate
systems enabling us to separate variables in FPE we will give only one representative for each
equivalence class.

Following [12] we choose the reduced equations (3) to be

9o = (To(t) — Ti()Ai)po ¢y = (Fao(®a) + Foi (@) 1i)@a (6)

whereTy, T;, F,0, F,; are some smooth functions of the indicated variakles, 1, 2, 3. With
this remark, the system of nonlinear PDEs for unknown functiens,, w3 takes the form

dw; do;
GO0 o i) i,j=123 @)
0x, 0x,
3
dw; dw;
Fo) 2% —1,0)  a=1,23 ©)
i1 3)(]' 3Xj
dw, g
0 S Aw, =0 a=1,23 9)
8)Cj 1
3
dw; da; 3B,
3 Frol@) et 22 4 To(r) + =% = 0, (10)
i1 ij 3)(]' axa

Thus the problem of variable separation in FPE reduces to integrating a system of ten
nonlinear PDEs for three functions. What is more, some coefficients are arbitrary functions,
which should be determined while integrating equations (7)—(10). We have succeeded
in constructing their general solution which yields, in particular, all possible functions
B1(X), B2(X), B3(X) such that FPE (1) is solvable by the method of separation of variables.

The system of equations (7), (8) has been integrated in [12].

Lemma 1. The general solutiod = & (¢, ¥) of system of PDEs (7), (8) is given implicitly by
the following formulae:

X =T H(0)Z(@) +w(r). (11)
Here7 (¢) is the time-dependeftx 3 orthogonal matrix:

COSx COSB — Sina sinB cosy
7(t) = | sinacosg + cosa sinB cosy

sing siny
—cosw Sing — sina cosp cosy  sina siny
— —sina sinB + cosx cOSB COSy  — COSa Siny ) (12)
cosp siny cosy

a, B, y being arbitrary smooth functions of 7 = z(w) is given by one of the 11 formulae:
(1) Cartesian coordinate system

{1=w1 22=W2 I3=W3.
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(2) Cylindrical coordinate system
71 = €”1COSwy 7o = €'SiNwy 73 = ws.
(3) Parabolic cylindrical coordinate system
1= (0 —0))/2 =wiw 23=ws
(4) Elliptic cylindrical coordinate system
71 = a coshw, COSw, zo = asinhw; SiNw, 73 = ws.
(5) Spherical coordinate system
71 = wy tsechw, Cosws 72 = w;  sechwy Sinws 23 = w; ' tanhw;.
(6) Prolate spheroidal coordinate system
z1 = a cSChw; sechw, COSw3 72 = a csChw; sechw; Ssinws (13)
73 = a cothw; tanhw;.
(7) Oblate spheroidal coordinate system
71 = a SeCw; Sechw, COSw3 72 = a SeCw; Sechw, Sinws
z3 = a tanw; tanhws.
(8) Parabolic coordinate system
71 = €772 Cosws 7o = €772 sinws
73 = (1 — &7)/2.
(9) Paraboloidal coordinate system
71 = 2a coshw; coSw, Sinhwz 72 = 2a Ssinhw, Sinw, coshws
z3 = a(cosh 2v; + cos 2o, — cosh 2v3)/2.
(10) Ellipsoidal coordinate system
71 = ik 1K) "rdn(wa, k) dn(ws, k) dn(ws, k)
72 = —k(k))"ren(wy, k) en(wy, k) cn(ws, k)
73 = k SNw1, k) SNwy, k) sSN(ws3, k).
(11) Conical coordinate system
21 = wp H(K) 7rdn(wy, k) dn(ws, k) z2 = io] tk(k") ~ten(ws, k) cn(ws, k)
73 = wy k SN(wy, k) SN w3, k)
H () is the3 x 3 diagonal matrix

hi(t) 0 0
H(t):( 0 ho(t) 0 ) (14)
0 0 hs(t)

where:

(i) h1(2), ha(2), ho(z) are arbitrary smooth functions for the completely split coordinate
system (case 1 from (13));
(iiy hi(r) = ha(t), h1(2), ha(r) being arbitrary smooth functions, for the partially split
coordinate systems (cases 2—4 from (13));
(i) h1(¢) = ho(t) = h3(t), h1(¢) being an arbitrary smooth function, for non-split coordinate
systems (cases 5-11 from (13));
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andw (¢) stands for the vector column whose enttig$t), wo(t), wa(t) are arbitrary smooth
functions of.

Here we use the usual notations for the trigonometric, hyperbolic and Jacobi elliptic
functions,k (0 < k < 1) being the modulus of the latter akti= (1 — k%)¥/2. To obtain real
values forzy, z», z3 for the ellipsoidal coordinates (system 10) we chaoseeal,w, complex
such that Rev, = K, andws complex such that Irmz = K’, whereK, K’ are defined by

/2
K(k)zf (1 — k2sinf0)"Y2dg K' =K (k).
0

To cover all real values afi, z2, z3 once, it is sufficient to leb; vary in the interval F K, K],
wyvaryin[K —iK’, K+iK'](parallel to the imaginary axis), amg vary in[-K+iK', K+iK'].
For the conical coordinates (system 4il) w,, w3 have the range & w;, —2K < w, < 2K,
K < w3 < K +2iK’. For more details about elliptic functions, see [14].

Moreover, we have obtained the explicit forms of the functiéps (i, j = 1, 2, 3) for
each class of functiornd = z(w) given in (13). The results are presented below in the form
of 3 x 3 Stickel matrices [15F, . . ., F11, whose(i, j)th entry is the corresponding function

Fij(w;).
1 0 O e —1 0
F1 = (O 1 0) Fo = ( 0 1 0)

0 0 1 0 0 1
w? -1 0 a?cosifw; 1 0O
F3= (a)g 1 0) Fa = (—a2C0§w2 -1 O)
0 0 1 0 0 1
“)1_4 —a)];2 0
fsz( 0 cosh“w; —1)
0 0 1
a?sinh*w; —sinh?2w; -1
Fo= <a2 cosh*w, cosh?w, —1)
0 0 1
a?cos*w; —coslw 1
Fr= (—a2 cosh*w, cosh?w, —1) (15)
0 0 1
ghor g 1
Fg = (e“‘“z 22 —1)
0 0 1
a?costf 2wy —acosh2y, -1
Fo = (—a2 cof2w;  acos vy 1 )
a?cosif2w3 acosh2vs; —1
srt(wi, k) srf(wi, k) 1
Fio = k? (srf‘(wz, k) sré(wo, k) 1)
st (ws, k) srf(ws k) 1
on —a)l_z 0
Fi11= ( 0 —kzsnz(a)z, k) 1) .
0 —k%srf(ws k) 1
We have also obtained the expressionsItdr), T>(t), T3(t) in terms ofh(t), ho(¢), ha(2):
1: Ty = h;? i=1273
2-4: Ty =hi? T,=0 T3 = h3? (16)
5-11: Ty = h;? T,=T3=0.
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In view of the above it is not difficult to integrate the remaining equations from the system
under study.

Note that we have chosen the coordinate systems;,, ws with the use of the equivalence
relation€ (5) in such a way that the relations

Aw,=0 a=123 (17)

hold for all the cases 1-11 in (13). Solving (9) with respecB¢x), i = 1, 2, 3 we get (see
also [12])

B(E) = Mt)(X — 0) + w. (18)
Here we use the designation
M) =TT )+ TOH@OH )T 2(¢) (19)

where 7(t), H(t) are variable 3x 3 matrices defined by formulae (12) and (14),
correspondingly = (w1(t), wo(¢), wa(z))” and the dot over a symbol means differentiation
with respect ta.

As the functionsB1, B, B3 are independent af it follows from (18) that

B(X) = Mi+7 7 = const (20)
M = const (21)
W = M+ 7. (22)

Taking into account thaf 7~ is the antisymmetric an@ H H 17 ! the symmetric part
of M (19), we get from (21)
T()T *(t) = const (23)
T H@)H ()T (1) = const (24)
Relation (23) yields the system of three ODEs for the functons, (1), y (¢)
&+ pcosy = Cy
Bcosasiny —y sina = C, (25)
Bsinasiny +y cose = C3
whereCy, C,, C3 are arbitrary real constants. Integrating the above system we obtain the
following form of the matrix7 (¢):
T(1) =CTC (26)
where(Cs, C, are arbitrary constant 8 3 orthogonal matrices and

—coss cosbt  sins  coss sinbt
T = ( sinbt 0 cosht )
sinscosbt  coss — sins sinbt
with arbitrary constants ands.
The substitution of equality (26) into (24) with subsequent differentiation of the obtained
equation with respect toyields

(27)

C;UF T CL + L+ Loy (FYHFC, =0 (28)
whereL = HHY,i.e.l; = h;/h;,i = 1, 2, 3. From (28) we have
[; = const i=1273

b(l1 — Ip) cosuz Siny, = 0
b(l1 — I3)(— sinay sin B, + cosa, COSB, COSy,) = 0
b(ly — I3)(Sinay COSP, + COSwp SiNB, COSy,) = 0

(29)
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wherexsy, B2, y» are the Euler angles for the orthogonal mafsix Thus we obtain the following
forms ofh;:

h; = ciexp(l;t) ¢; =const [; = const i=123 (30)
From (29) we get the possible formsiafl; andCs:
i b=0 I3, I5, I3 are arbitrary constants
C, is an arbitrary constant orthogonal matrix
(i) b£0 hh=l=1I3
C, is an arbitrary constant orthogonal matrix (31)
(i) b£0 h=ly#I;3

£1C0SH —gqSind 0
Cz = < 0 0 —8182)

£2SING  &5C0SH 0
wheree;, e, = £1, andd is arbitrary constant. We do not adduce cdses0, 11 # I = I3
andb # 0,1, # [, = I3 because they are equivalent to case (iii).
Now the last equation from the system (7)—(10) takes the form

iF()Mﬁ@HWHiy 0
io\wi) 7— 77— i =Y
i=1 ° dxj 9x; ° i=1

Splitting this relation with respect to independent variablgsw,, ws, t for each class
of functions 7 = Z(w) given in (13) yields the explicit forms of the functions
Fo1(w1), Foa(wy), Fos(ws) andTy(r) up to the choice of;,i = 1, 2, 3in (6)

3
Fio=0 TOZ_Zli~ (32)
i—1

We summarize the above-obtained results in the form of the following assertion.

Theorem 1. The FPE (1) admits separation of variables if the drift coefficié?(té) are linear
and given by formulae (20), where the mattx is defined by formulae (19), (26), (27), (30)
and (31).

The coordinate systems allowing for variable separation in the corresponding FPE are
given implicitly by formulae (11), (13) and (14), whefdr) is given in (26), (27) and (31),
functionsh; (t), i = 1, 2, 3 are given in (30) and functions;(¢), i = 1, 2, 3 are solutions of
the system of ODEs (22). Further details on explicit forms of the drift coefficients and the
coordinate systems are given in section 3.

3. Exact solutions

Remarkably, for the equation under study it is possible to give a complete account of solutions
with separated variables. They have the form (2) and the separation equations for the functions
eu, (0 =0,1,2,3) read as (6), where the coefficierfiy;, a,i = 1, 2, 3 are the entries of
the corresponding &tkel matrices (15), functiorg,, a = 1, 2, 3 are listed in (16) and the
functionsTy, F,o, a = 1, 2, 3 given in (32).

The separation equation for the functigg(z) is easily integrated. The separation
equations for the functiong; (w;), (i = 1, 2, 3) are similar to those arising from separation
of variables in the Helmholtz equatign s + »?)¥ = 0. The solutions of these equations are
well known (see, [6, 13] and references therein). Below we adduce solutions of FPE (1) for
each class of functiord= z(w) given in (13).



7400 A Zhalij

(1) Cartesian coordinates

3 -2
ua,é>=exp{§:(xﬁi—64“—Jﬂ)}exmuaw1+ﬁwz+yw@>
i=1 2;

andkl = —Olz, Ao = —,32, Az = —)/2.
(2) Cylindrical coordinates

2
u(t,®) = exp AL @2t 43, S8 et (0] 4[5y
2l 2l

x J, (€) expi (nwz + y wz))

whereJ, is the Bessel function [14,16], and = —a?, A, = —n?, A3 = —y2.
(3) Parabolic cylindrical coordinates

-2 —2
u(t,®) = exp AL @2t 43, B8 et (2] 415y
201 2l3

X Diy_12(F001) D_ij_1/2(F0 wp) €

whereo = €7/4(2a)Y/2, D, isthe parabolic cylinder function [14,17] ahgd = —a?, Ay =
_Za:u‘s )"3 = _yz‘

(4) For the case of elliptic cylindrical coordinates we have two types of solutions

-2 2
u(t,d) = exp AL @2t 43, B3 et (0] 4[5y
201 213

xCe, (w1, q) C&, (wg, )€ n=0,12,...

-2 -2

u(t,®) = exp AL @2t 43, S8 et (0] 415y
20 23

xS6, (w1, q) S& (w2, q)€ n=123...

where cg, sg, are the even and odd Mathieu functions,, C&e, are the even and odd
modified Mathieu functions [14,18] and = —4qa®, A» = 2q + c,, A3 = —y?, andc,
are eigenvalues of the Mathieu functions.
(5) Spherical coordinates
-2
u(t, J)) = eXp{)\]_;lTezht — 3[1[} a)i/zfi(m.]_/g) (/1) Pnim (tanhwg)ei"’3"’
1

whereJ, is the Bessel functionP” is the Legendre function [14] ard = —a? hp =
—n(n+1), r3 = —m2.
(6) Prolate spheroidal coordinates

-2
u(t,®) = exp ML e gy
20

xPg" (cothwy, —a®r1)Pg"! (tanhw,, —a?iry)em e

wheremisintegern =0, 1,2, ..., —n < m < n, Pg' isthe spheroidal wavefunction [18]
andi, = A7 g = —m2
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(7) Oblate spheroidal coordinates

u(t,) = exp:)»lclee‘ZZl’ - 3111} Pg"(—itanwy, —a?r1)PS" (tanhwy, a®hy)eme
1

wherem is integern = 0,1,2,..., —n < m < n, Pg is the spheroidal wavefunction
andi, = A)", A3 = —m?.
(8) Parabolic coordinates

-2
u(t,®) = exp g2 _ gy | gmes
201

x @t exp(Hia €t /2) 1 Fi(—iio/da + (m + 1) /2, m + 1, Fiae?™)
x @2 exp(+ia€?2 /2) 1 F1(iro /o + (m + 1) /2, m + 1, Fiae??)
where; F; is the confluent hypergeometric function [14,17] and= —a?, A3 = —m?.
(9) Paraboloidal coordinates

-2
u(t,w) = eXp{/\leTe”ﬂ — Bth} gc, (iwy; 2aa, Ap/2a)
1

xQC, (w2; 2aa, Ay/2a) gC, (iwz + 17w/2; 2ac, Lo/ 2a)
or the same form with gcreplaced by gs Here gg and gs are the even and odd non-
polynomial solutions of the Whittaker—Hill equation [19] amd= 0, 1, 2, ..., and what
is more i = —a?, A3 = [y
(10) Ellipsoidal coordinates

-2

u(t,w) = exp{xl%e‘%’ — 3111} el (w1) el (wy) el (w3)
1

wherem is anintegern =0, 1,2, ..., —n < m < n, el is the ellipsoidal wavefunction
[18] ar]d)\l = Vums A2 = Apm> A3 = .-

(11) For the case of conical coordinates we have two types of solutions

cr? 1

u(t,d) = expyii—e 2 — 3t t w? i) (@/@1)

12—l1
xEC (w2) EC) (w3) n=01212... m=01...,n
. 1
u(t, ®) = exp Alclee‘ZZl’ —3ht§ wf Ty (@/w1)
1
xES;' (w2) ES; (w3) n=123... m=12...,n
whereJ, is the Bessel function, Ecand E§' are the even and odd Lanfunctions [14,18]
andi = —a? Ak = —n(n + 1), 13 = —c", wherec” are eigenvalues of the La@mn

functions.

In these equations we suppose thag 0, (i = 1,2, 3). Given the conditiorl; = 0, the
expressions exp-2/;¢)/2l; should be replaced bys.

Finally, we give a list of the drift velocity vectors8(x) providing separability of the
corresponding FPEs. They have the following form:

B(F) = MX +0
where? is arbitrary constant vector antlf is constant matrix given by one of the following
formulae:
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(1) M =TLT, where

L 0 0
Lz(o ; o).
0 0 I3

1, I, I3 are constants and is an arbitrary constant 8 3 orthogonal matrix, i.eM is a
real symmetric matrix with eigenvalués [, Is.
(a) 1, I, I3 are all distinct. The corresponding FPE has solution 1 only from the above
list. The new coordinates;, w,, wz are given implicitly by the formula
X =TH()Z(®) +w(r) (33)
wherez (@) is given by formula 1 from (13)p(¢) is solution of system of ODEs (22)
and
Clehl 0 0
H(t) = ( 0 e 0 ) (34)
0 0 C3e[3f
with arbitrary constants,, ¢y, cs.

(b) Iy = I # I3. The corresponding FPE has solutions 1-4 only from the above list. The
new coordinate®;, w,, w3z are given implicitly by (33), wherg(w) is given by one of
the formulae 1-4 from (13) and (¢) is given by (34) with arbitrary constast, ¢z, c3
satisfying the conditior; = ¢, for the partially split coordinates 2—4 from (13).

(¢)ly = b = I3, i.e. M = 111, wherel is unit matrix. The corresponding FPE has
all 11 solutions, listed above. The new coordinatgsw;, ws are given implicitly
by formula (33), where& (o) is given by one of the 11 formulae (13) aif(z) is
given by (34) with arbitrary constants, cz, c3 satisfying the conditior; = ¢, for
the partially split coordinates 2—4 from (13) and the conditipa= ¢, = c3 for the
non-split coordinates 5-11 from (13).

()

0 COSs 0
M=bC, (—COSS 0 sins> Crt+hl
0 —sins 0
wherel is the unit matrix and’; is an arbitrary constant 8 3 orthogonal matrixb, s, I3
are arbitrary constants arid=# 0. The corresponding FPE has all 11 solutions, listed
above with/; = I, = I3. The new coordinates;, wy, ws are given implicitly by formula
(11), wher€Z (o) is given by one of the 11 formulae (13)(¢) is given by (26), (27)w(¢)
is solution of system of ODEs (22) and

C1 0 0
H(t) = exp(lst) ( 0 o 0)
0 0 C3

with arbitrary constantss, ¢z, c3 satisfying the condition; = ¢, for the partially split
coordinates 2—4 from (13) and the conditian= ¢, = c3 for non-split coordinates 5-11

from (13).
3)
$(y1+13+(ly —I3)cosB)  bcoss 23— 1) sin2s
M=0 —b coss h bsins et
23— 1) sin2s —bsins  3(ly +13— (I1 — I3) cOS B)

whereC; is an arbitrary constantd3 orthogonal matrixb, s, 11, I, are arbitrary constants,
[y # Iz andb # 0. The corresponding FPE has solutions 1-4 only from the above list
with [y = I, # I3. The new coordinates:, w,, w3 are given implicitly by formula (11),
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wherez (@) is given by one of the formulae 1-4 from (13)(¢) is given by (26), (27) and
(iii) from (31), w(¢) is solution of system of ODEs (22) and

c1d1’ 0 0
H(t):( 0 e 0 )
0 0 Cgel3l

with arbitrary constants;, c,, c3 satisfying the conditiorer; = ¢, for the partially split
coordinates 2—4 from (13).

Note that the above-obtained solutions can be used as the basis functions to expand an
arbitrary smooth solution of the equation under study in a properly chosen Hilbert space (for
more details, see [6]).

The physical analysis of the obtained results seems to be very interesting, but the detailed
study of this problem goes beyond the scope of the present paper.

4. R-separation of variables in the Fokker—Planck equation

In this paper, we restrict ourselves to the choice of separation ansatz in the form (2). Generally
speaking, the problem of separation of variables includes the seariseparablesolutions
of the more general form [6]

3
u(t, ) = eXOpo(t) [ | pala(t. 3). 2). (35)
a=1

In this case we have an analogue of the system of equations (9), (10)

JR dw, Jdw,
(2_+Bj) Do v 2 A, =0  a=1,23 (36)
an 8)Cj ot
3
dw; 0 oR oR BR oR 0B
Zﬂo(wi)iﬁ+—+AR+B +To(t) + —= =0, (37)
= dx; dx; 0Ot 0x, 8xa 0x, 0x,

Equations (7), (8) are not changed. In a way analogous to that used above we get from (36)
the form of the drift coefficient® (¥)

BF) = M(t)(% — ) +w — 2VR (38)

whereM(¢) is given by formula (19).
The compatibility conditions of the above system of PDEs (38) yield

lez - B2x1 = —2(0( + :3 COSV)
Biy, — B3y, = —2(B cosa siny — y sina) (39)
By, — B3, = —2(B Sina siny + y cosw).

As the funct|onsBl, B,, B3 are independent of, it follows from these conditions that
rotB = const and the functiong(z), B(z), y () obey the system of ODEs (25). Thus the
matrix 7 (¢) have the form (26).

Consequently the following assertion holds true.

Theorem 2. For the Fokker—Planck equation (1) to beseparable it is necessary that the
rotor of the drift velocity vectoB () is constant.
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5. Concluding remarks

It follows from theorem 1 that the choice of the drift coefficieter) allowing for variable
separation in the corresponding FPE is very restricted. Namely, they should be linear in the
spatial variables, x», x3 in order to provide separability of FPE (1) into three second-order
ODEs. However, if we allow for separation equations to be of lower order, then additional
possibilities for variable separation in FPE arise. As an example, we give the drift coefficients

Bi1(X) =0 By(X¥) =0 B3(X) = B3 ( x2 +x22)

where B3 is arbitrary smooth function. FPE (1) with these drift coefficients separates in the

cylindrical coordinate system w; = In(,/xf +x§), wy = arctan(xy/xz), w3 = x3 into two
first-order and one second-order ODEs. _

For the one-dimensional FPE, the choice of the drift coefficiBiify allowing for variable
separation is essentially wider [4].
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