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Abstract. We classify (1+3)-dimensional Fokker–Planck equations with a constant diagonal
diffusion matrix that are solvable by the method of separation of variables. As a result, we
get possible forms of the drift coefficientsB1(Ex), B2(Ex), B3(Ex) providing separability of the
corresponding Fokker–Planck equations and carry out variable separation in the latter. It is
established, in particular, that the necessary condition for the Fokker–Planck equation to be
separable is that the drift coefficientsEB(Ex)must be linear. We also find the necessary condition for
R-separability of the Fokker–Planck equation. Furthermore, exact solutions of the Fokker–Planck
equation with separated variables are constructed.

1. Introduction

Diffusion processes play an important role in different fields of physics, chemistry and
biology [1,2] and have very broad applications in technics. For example, they play a decisive
role in electronics [1]. That is why analytical solutions of diffusion equations were, are and will
be of great importance for applications, since they provide new insights into the nature of the
diffusion processes described by the equations in question. As an example, let us mention the
famous Black–Scholes models, whose success is based, in particular, on an analytical solution
constructed in an explicit form.

Unfortunately, the diffusion (Fokker–Planck) equations that are used in applications, have
variable coefficients and cannot be integrated by the standard Fourier transform method. In
fact, the only available efficient way for constructing analytical solutions of partial differential
equations (PDEs) with variable coefficients is the method of separation of variables.

The simplest and most widely used in applications is the case of the constant diffusion
matrix. Therefore the principal object of the study in the present paper is a problem of separation
of variables in the Fokker–Planck equation (FPE) [3] with a constant diagonal diffusion matrix

ut +1u + (Ba(Ex)u)xa = 0 (1)

where EB(Ex) = (B1(Ex), B2(Ex), B3(Ex)) is the drift velocity vector. Hereu = u(t, Ex) and
Bi(Ex), i = 1, 2, 3 are smooth real-valued functions. Hereafter, the subscriptxa implies
partial differentiation and, moreover, summation over the repeated Latin indices from 1 to 3
is understood. The matrix of the constant diffusion coefficients is reduced to the unit matrix
by proper simple transformation.
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In the present paper we solve the problem of variable separation in FPE (1) into second-
order ordinary differential equations (ODEs) in a sense that we obtain possible forms of the
drift coefficientsB1(Ex), B2(Ex), B3(Ex) providing separability of (1). Furthermore, we construct
inequivalent coordinate systems enabling us to separate variables in the corresponding FPEs
and carry out variable separation.

The separability criteria for the one-dimensional FPE have been obtained in [4].
The problem of variable separation in the three-dimensional FPE was considered in a

restricted sense by Sukhomlin in [5]. He used the symmetry approach which is based on
the well known fact that a solution with separated variables is a common eigenfunction of
three first- or second-order differential operators which commute with each other and with the
operator of the equation under consideration (see [6] and references therein). Sukhomlin has
obtained some drift coefficients providing separability of FPE (1) and carried out separation
of variables in the latter. His results, however, are far from being complete and systematic.

Our analysis is based on the direct approach to variable separation in linear PDEs suggested
in [7–9]. It has been successfully applied to solving the variable separation problem in the
wave [7] and Schr̈odinger equations [8–12] with variable coefficients.

2. Separation of variables in the Fokker–Planck equation

Let us formulate briefly the algorithm of variable separation in FPE (1) following [9].
We say that FPE (1) is separable in a coordinate systemt , ωa = ωa(t, Ex), a = 1, 2, 3 if

the separation ansatz

u(t, Ex) = ϕ0(t)

3∏
a=1

ϕa(ωa(t, Ex), Eλ) (2)

reduces PDE (1) to four ODEs for the functionsϕµ (µ = 0, 1, 2, 3):

ϕ′0 = U0(t, ϕ0; Eλ) ϕ′′a = Ua(ωa, ϕa, ϕ′a; Eλ). (3)

HereU0, . . . , U3 are some smooth functions of the indicated variables,Eλ = (λ1, λ2, λ3) ∈
3 = {an open domain inR3} are separation constants (spectral parameters, eigenvalues) and,
what is more,

rank

∥∥∥∥∂Uµ∂λa

∥∥∥∥3 3

µ=0 a=1

= 3. (4)

The above condition secures essential dependence of a solution with separated variables on
the separation constantsEλ.

The principal steps of the procedure of variable separation in FPE (1) are as follows:

(1) We insert the ansatz (2) into FPE and express the derivativesϕ′0, ϕ
′′
1, ϕ

′′
2, ϕ

′′
3 in terms of

functionsϕ0, ϕ1, ϕ2, ϕ3, ϕ
′
1, ϕ
′
2, ϕ
′
3 using equations (3).

(2) We regard ϕ0, ϕ1, ϕ2, ϕ3, ϕ
′
1, ϕ
′
2, ϕ
′
3, λ1, λ2, λ3 as the new independent variables

y1, . . . , y10. As the functionsω1, ω2, ω3 are independent of the variablesy1, . . . , y10,
we can split by these variables and get an over-determined system of nonlinear PDEs for
unknown functionsω1, ω2, ω3.

(3) After solving the above system we obtain an exhaustive description of coordinate systems
providing separability of FPE.

Having performed the first two steps of the above algorithm we arrive at the conclusion
that the separation equations (3) are linear both inϕ0, . . . , ϕ3 andλ1, λ2, λ3.
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Next, we introduce an equivalence relationE on the set of all coordinate systems providing
separability of FPE. We say that two coordinate systemst, ω1, ω2, ω3 and t̃ , ω̃1, ω̃2, ω̃3 are
equivalentif the corresponding ansatze (2) are transformed one into another by the invertible
transformations of the form

t → t̃ = f0(t) ωi → ω̃i = fi(ωi) (5)

wheref0, . . . , f3 are some smooth functions andi = 1, 2, 3. These equivalent coordinate
systems give rise to the same solution with separated variables, therefore we shall not
distinguish between them. The equivalence relation (5) splits the set of all possible coordinate
systems into equivalence classes. In what follows, when presenting the lists of coordinate
systems enabling us to separate variables in FPE we will give only one representative for each
equivalence class.

Following [12] we choose the reduced equations (3) to be

ϕ′0 = (T0(t)− Ti(t)λi)ϕ0 ϕ′′a = (Fa0(ωa) + Fai(ωa)λi)ϕa (6)

whereT0, Ti, Fa0, Fai are some smooth functions of the indicated variables,a = 1, 2, 3. With
this remark, the system of nonlinear PDEs for unknown functionsω1, ω2, ω3 takes the form

∂ωi

∂xa

∂ωj

∂xa
= 0 i 6= j i, j = 1, 2, 3 (7)

3∑
i=1

Fia(ωi)
∂ωi

∂xj

∂ωi

∂xj
= Ta(t) a = 1, 2, 3 (8)

Bj
∂ωa

∂xj
+
∂ωa

∂t
+1ωa = 0 a = 1, 2, 3 (9)

3∑
i=1

Fi0(ωi)
∂ωi

∂xj

∂ωi

∂xj
+ T0(t) +

∂Ba

∂xa
= 0. (10)

Thus the problem of variable separation in FPE reduces to integrating a system of ten
nonlinearPDEs for three functions. What is more, some coefficients are arbitrary functions,
which should be determined while integrating equations (7)–(10). We have succeeded
in constructing their general solution which yields, in particular, all possible functions
B1(Ex), B2(Ex), B3(Ex) such that FPE (1) is solvable by the method of separation of variables.

The system of equations (7), (8) has been integrated in [12].

Lemma 1. The general solutionEω = Eω(t, Ex) of system of PDEs (7), (8) is given implicitly by
the following formulae:

Ex = T (t)H(t)Ez( Eω) + Ew(t). (11)

HereT (t) is the time-dependent3× 3 orthogonal matrix:

T (t) =
( cosα cosβ − sinα sinβ cosγ

sinα cosβ + cosα sinβ cosγ
sinβ sinγ

→
− cosα sinβ − sinα cosβ cosγ sinα sinγ
− sinα sinβ + cosα cosβ cosγ − cosα sinγ

cosβ sinγ cosγ

)
(12)

α, β, γ being arbitrary smooth functions oft ; Ez = Ez( Eω) is given by one of the 11 formulae:

(1) Cartesian coordinate system

z1 = ω1 z2 = ω2 z3 = ω3.
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(2) Cylindrical coordinate system

z1 = eω1 cosω2 z2 = eω1 sinω2 z3 = ω3.

(3) Parabolic cylindrical coordinate system

z1 = (ω2
1 − ω2

2)/2 z2 = ω1ω2 z3 = ω3.

(4) Elliptic cylindrical coordinate system

z1 = a coshω1 cosω2 z2 = a sinhω1 sinω2 z3 = ω3.

(5) Spherical coordinate system

z1 = ω−1
1 sechω2 cosω3 z2 = ω−1

1 sechω2 sinω3 z3 = ω−1
1 tanhω2.

(6) Prolate spheroidal coordinate system

z1 = a cschω1 sechω2 cosω3 z2 = a cschω1 sechω2 sinω3

z3 = a cothω1 tanhω2.
(13)

(7) Oblate spheroidal coordinate system

z1 = a secω1 sechω2 cosω3 z2 = a secω1 sechω2 sinω3

z3 = a tanω1 tanhω2.

(8) Parabolic coordinate system

z1 = eω1+ω2 cosω3 z2 = eω1+ω2 sinω3

z3 = (e2ω1 − e2ω2)/2.

(9) Paraboloidal coordinate system

z1 = 2a coshω1 cosω2 sinhω3 z2 = 2a sinhω1 sinω2 coshω3

z3 = a(cosh 2ω1 + cos 2ω2 − cosh 2ω3)/2.

(10) Ellipsoidal coordinate system

z1 = ik−1(k′)−1dn(ω1, k)dn(ω2, k)dn(ω3, k)

z2 = −k(k′)−1cn(ω1, k) cn(ω2, k) cn(ω3, k)

z3 = k sn(ω1, k) sn(ω2, k) sn(ω3, k).

(11) Conical coordinate system

z1 = ω−1
1 (k′)−1dn(ω2, k)dn(ω3, k) z2 = iω−1

1 k(k′)−1cn(ω2, k) cn(ω3, k)

z3 = ω−1
1 k sn(ω2, k) sn(ω3, k)

H(t) is the3× 3 diagonal matrix

H(t) =
(
h1(t) 0 0

0 h2(t) 0
0 0 h3(t)

)
(14)

where:

(i) h1(t), h2(t), h2(t) are arbitrary smooth functions for the completely split coordinate
system (case 1 from (13));

(ii) h1(t) = h2(t), h1(t), h3(t) being arbitrary smooth functions, for the partially split
coordinate systems (cases 2–4 from (13));

(iii) h1(t) = h2(t) = h3(t), h1(t) being an arbitrary smooth function, for non-split coordinate
systems (cases 5–11 from (13));
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and Ew(t) stands for the vector column whose entriesw1(t), w2(t), w3(t) are arbitrary smooth
functions oft .

Here we use the usual notations for the trigonometric, hyperbolic and Jacobi elliptic
functions,k (0 < k < 1) being the modulus of the latter andk′ = (1− k2)1/2. To obtain real
values forz1, z2, z3 for the ellipsoidal coordinates (system 10) we chooseω1 real,ω2 complex
such that Reω2 = K, andω3 complex such that Imω3 = K ′, whereK,K ′ are defined by

K(k) =
∫ π/2

0
(1− k2 sin2 θ)−1/2 dθ K ′ = K(k′).

To cover all real values ofz1, z2, z3 once, it is sufficient to letω1 vary in the interval [−K,K],
ω2 vary in [K−iK ′,K+iK ′](parallel to the imaginary axis), andω3 vary in [−K+iK ′,K+iK ′].
For the conical coordinates (system 11)ω1, ω2, ω3 have the range 06 ω1,−2K < ω2 < 2K,
K 6 ω3 < K + 2iK ′. For more details about elliptic functions, see [14].

Moreover, we have obtained the explicit forms of the functionsFij , (i, j = 1, 2, 3) for
each class of functionsEz = Ez( Eω) given in (13). The results are presented below in the form
of 3× 3 Sẗackel matrices [15]F1, . . . ,F11, whose(i, j)th entry is the corresponding function
Fij (ωi).

F1 =
( 1 0 0

0 1 0
0 0 1

)
F2 =

( e2ω1 −1 0
0 1 0
0 0 1

)

F3 =
(
ω2

1 −1 0
ω2

2 1 0
0 0 1

)
F4 =

(
a2 cosh2ω1 1 0
−a2 cos2ω2 −1 0

0 0 1

)

F5 =
(
ω−4

1 −ω−2
1 0

0 cosh−2ω2 −1
0 0 1

)

F6 =
(
a2 sinh−4ω1 − sinh−2ω1 −1
a2 cosh−4ω2 cosh−2ω2 −1

0 0 1

)

F7 =
(

a2 cos−4ω1 − cos−2ω1 1
−a2 cosh−4ω2 cosh−2ω2 −1

0 0 1

)
(15)

F8 =
( e4ω1 −e2ω1 −1

e4ω2 e2ω2 −1
0 0 1

)

F9 =
(
a2 cosh2 2ω1 −a cosh 2ω1 −1
−a2 cos2 2ω2 a cos 2ω2 1
a2 cosh2 2ω3 a cosh 2ω3 −1

)

F10 = k2

( sn4(ω1, k) sn2(ω1, k) 1
sn4(ω2, k) sn2(ω2, k) 1
sn4(ω3, k) sn2(ω3, k) 1

)

F11 =
(
ω−4

1 −ω−2
1 0

0 −k2sn2(ω2, k) 1
0 −k2sn2(ω3, k) 1

)
.

We have also obtained the expressions forT1(t), T2(t), T3(t) in terms ofh1(t), h2(t), h3(t):

1: Ti = h−2
i i = 1, 2, 3

2–4: T1 = h−2
1 T2 = 0 T3 = h−2

3 (16)

5–11: T1 = h−2
1 T2 = T3 = 0.
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In view of the above it is not difficult to integrate the remaining equations from the system
under study.

Note that we have chosen the coordinate systemsω1, ω2, ω3 with the use of the equivalence
relationE (5) in such a way that the relations

1ωa = 0 a = 1, 2, 3 (17)

hold for all the cases 1–11 in (13). Solving (9) with respect toBj(Ex), i = 1, 2, 3 we get (see
also [12])

EB(Ex) =M(t)(Ex − Ew) + Ėw. (18)

Here we use the designation

M(t) = Ṫ (t)T −1(t) + T (t)Ḣ (t)H−1(t)T −1(t) (19)

where T (t), H(t) are variable 3× 3 matrices defined by formulae (12) and (14),
correspondingly,Ew = (w1(t), w2(t), w3(t))

T and the dot over a symbol means differentiation
with respect tot .

As the functionsB1, B2, B3 are independent oft , it follows from (18) that

EB(Ex) =MEx + Ev Ev = const (20)

M = const (21)

Ėw =M Ew + Ev. (22)

Taking into account thaṫT T −1 is the antisymmetric andT ḢH−1T −1 the symmetric part
ofM (19), we get from (21)

Ṫ (t)T −1(t) = const (23)

T (t)Ḣ (t)H−1(t)T −1(t) = const. (24)

Relation (23) yields the system of three ODEs for the functionsα(t), β(t), γ (t)

α̇ + β̇ cosγ = C1

β̇ cosα sinγ − γ̇ sinα = C2

β̇ sinα sinγ + γ̇ cosα = C3

(25)

whereC1, C2, C3 are arbitrary real constants. Integrating the above system we obtain the
following form of the matrixT (t):

T (t) = C1T̃ C2 (26)

whereC1, C2 are arbitrary constant 3× 3 orthogonal matrices and

T̃ =
(− coss cosbt sins coss sinbt

sinbt 0 cosbt
sins cosbt coss − sins sinbt

)
(27)

with arbitrary constantsb ands.
The substitution of equality (26) into (24) with subsequent differentiation of the obtained

equation with respect tot yields

C−1
2 T̃

−1 ˙̃T C2L + L̇ +LC−1
2

˙
(T̃ −1)T̃ C2 = 0 (28)

whereL = ḢH−1, i.e. li = ḣi/hi , i = 1, 2, 3. From (28) we have

li = const i = 1, 2, 3

b(l1− l2) cosα2 sinγ2 = 0

b(l1− l3)(− sinα2 sinβ2 + cosα2 cosβ2 cosγ2) = 0

b(l2 − l3)(sinα2 cosβ2 + cosα2 sinβ2 cosγ2) = 0

(29)
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whereα2, β2, γ2 are the Euler angles for the orthogonal matrixC2. Thus we obtain the following
forms ofhi :

hi = ci exp(li t) ci = const li = const i = 1, 2, 3. (30)

From (29) we get the possible forms ofb, li andC2:

(i) b = 0 l1, l2, l3 are arbitrary constants

C2 is an arbitrary constant orthogonal matrix

(ii) b 6= 0 l1 = l2 = l3
C2 is an arbitrary constant orthogonal matrix (31)

(iii) b 6= 0 l1 = l2 6= l3

C2 =
(
ε1 cosθ −ε1 sinθ 0

0 0 −ε1ε2

ε2 sinθ ε2 cosθ 0

)
whereε1, ε2 = ±1, andθ is arbitrary constant. We do not adduce casesb 6= 0, l1 6= l2 = l3
andb 6= 0, l2 6= l1 = l3 because they are equivalent to case (iii).

Now the last equation from the system (7)–(10) takes the form
3∑
i=1

Fi0(ωi)
∂ωi

∂xj

∂ωi

∂xj
+ T0(t) +

3∑
i=1

li = 0.

Splitting this relation with respect to independent variablesω1, ω2, ω3, t for each class
of functions Ez = Ez( Eω) given in (13) yields the explicit forms of the functions
F01(ω1), F02(ω2), F03(ω3) andT0(t) up to the choice ofλi, i = 1, 2, 3 in (6)

Fi0 = 0 T0 = −
3∑
i=1

li . (32)

We summarize the above-obtained results in the form of the following assertion.

Theorem 1. The FPE (1) admits separation of variables if the drift coefficientsEB(Ex) are linear
and given by formulae (20), where the matrixM is defined by formulae (19), (26), (27), (30)
and (31).

The coordinate systems allowing for variable separation in the corresponding FPE are
given implicitly by formulae (11), (13) and (14), whereT (t) is given in (26), (27) and (31),
functionshi(t), i = 1, 2, 3 are given in (30) and functionswi(t), i = 1, 2, 3 are solutions of
the system of ODEs (22). Further details on explicit forms of the drift coefficients and the
coordinate systems are given in section 3.

3. Exact solutions

Remarkably, for the equation under study it is possible to give a complete account of solutions
with separated variables. They have the form (2) and the separation equations for the functions
ϕµ, (µ = 0, 1, 2, 3) read as (6), where the coefficientsFai , a, i = 1, 2, 3 are the entries of
the corresponding Stäckel matrices (15), functionsTa, a = 1, 2, 3 are listed in (16) and the
functionsT0, Fa0, a = 1, 2, 3 given in (32).

The separation equation for the functionϕ0(t) is easily integrated. The separation
equations for the functionsϕi(ωi), (i = 1, 2, 3) are similar to those arising from separation
of variables in the Helmholtz equation(13 +ω2)9 = 0. The solutions of these equations are
well known (see, [6, 13] and references therein). Below we adduce solutions of FPE (1) for
each class of functionsEz = Ez( Eω) given in (13).
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(1) Cartesian coordinates

u(t, Eω) = exp

{ 3∑
i=1

(
λi
c−2
i

2li
e−2li t − li t

)}
exp(i(αω1 + βω2 + γω3))

andλ1 = −α2, λ2 = −β2, λ3 = −γ 2.
(2) Cylindrical coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t + λ3

c−2
3

2l3
e−2l3t − (2l1 + l3)t

}
×Jn(αeω1) exp(i(nω2 + γω3))

whereJn is the Bessel function [14,16], andλ1 = −α2, λ2 = −n2, λ3 = −γ 2.

(3) Parabolic cylindrical coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t + λ3

c−2
3

2l3
e−2l3t − (2l1 + l3)t

}
×Diµ−1/2(±σω1)D−iµ−1/2(±σω2)e

iω3γ

whereσ = eiπ/4(2α)1/2,Dν is the parabolic cylinder function [14,17] andλ1 = −α2, λ2 =
−2αµ, λ3 = −γ 2.

(4) For the case of elliptic cylindrical coordinates we have two types of solutions

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t + λ3

c−2
3

2l3
e−2l3t − (2l1 + l3)t

}
×Cen(ω1, q) cen(ω2, q)e

iω3γ n = 0, 1, 2, . . .

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t + λ3

c−2
3

2l3
e−2l3t − (2l1 + l3)t

}
×Sen(ω1, q) sen(ω2, q)e

iω3γ n = 1, 2, 3, . . .

where cen, sen are the even and odd Mathieu functions, Cen,Sen are the even and odd
modified Mathieu functions [14, 18] andλ1 = −4qa2, λ2 = 2q + cn, λ3 = −γ 2, andcn
are eigenvalues of the Mathieu functions.

(5) Spherical coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
ω

1/2
1 J±(n+1/2)(α/ω1)P

±m
n (tanhω2)e

iω3m

whereJν is the Bessel function,Pmn is the Legendre function [14] andλ1 = −α2, λ2 =
−n(n + 1), λ3 = −m2.

(6) Prolate spheroidal coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
×Ps|m|n (cothω1,−a2λ1)Ps|m|n (tanhω2,−a2λ1)e

imω3

wherem is integer,n = 0, 1, 2, . . . ,−n 6 m 6 n,Psmn is the spheroidal wavefunction [18]
andλ2 = λ|m|n , λ3 = −m2.
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(7) Oblate spheroidal coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
Ps|m|n (−i tanω1,−a2λ1)Ps|m|n (tanhω2, a

2λ1)e
imω3

wherem is integer,n = 0, 1, 2, . . . ,−n 6 m 6 n,Psmn is the spheroidal wavefunction
andλ2 = λ|m|n , λ3 = −m2.

(8) Parabolic coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
eimω3

×emω1 exp(±iαe2ω1/2) 1F1(−iλ2/4α + (m + 1)/2, m + 1,∓iαe2ω1)

×emω2 exp(±iαe2ω2/2) 1F1(iλ2/4α + (m + 1)/2, m + 1,∓iαe2ω2)

where1F1 is the confluent hypergeometric function [14,17] andλ1 = −α2, λ3 = −m2.

(9) Paraboloidal coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
gcn(iω1; 2aα, λ2/2α)

×gcn(ω2; 2aα, λ2/2α) gcn(iω3 + π/2; 2aα, λ2/2α)

or the same form with gcn replaced by gsn. Here gcn and gsn are the even and odd non-
polynomial solutions of the Whittaker–Hill equation [19] andn = 0, 1, 2, . . . , and what
is more,λ1 = −α2, λ3 = µn.

(10) Ellipsoidal coordinates

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
elmn (ω1) elmn (ω2) elmn (ω3)

wherem is an integer,n = 0, 1, 2, . . . ,−n 6 m 6 n, elmn is the ellipsoidal wavefunction
[18] andλ1 = νnm, λ2 = λnm, λ3 = µnm.

(11) For the case of conical coordinates we have two types of solutions

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
ω

1
2
1 J±(n+ 1

2 )
(α/ω1)

×Ecmn (ω2)Ecmn (ω3) n = 0, 1, 2, . . . m = 0, 1, . . . , n

u(t, Eω) = exp

{
λ1
c−2

1

2l1
e−2l1t − 3l1t

}
ω

1
2
1 J±(n+ 1

2 )
(α/ω1)

×Esmn (ω2)Esmn (ω3) n = 1, 2, 3, . . . m = 1, 2, . . . , n

whereJν is the Bessel function, Ecmn and Esmn are the even and odd Lamé functions [14,18]
andλ1 = −α2, λ2 = −n(n + 1), λ3 = −cmn , wherecmn are eigenvalues of the Lamé
functions.

In these equations we suppose thatli 6= 0, (i = 1, 2, 3). Given the conditionli = 0, the
expressions exp(−2li t)/2li should be replaced by−t .

Finally, we give a list of the drift velocity vectorsEB(Ex) providing separability of the
corresponding FPEs. They have the following form:

EB(Ex) =MEx + Ev
whereEv is arbitrary constant vector andM is constant matrix given by one of the following
formulae:
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(1) M = T LT −1, where

L =
(
l1 0 0
0 l2 0
0 0 l3

)
.

l1, l2, l3 are constants andT is an arbitrary constant 3× 3 orthogonal matrix, i.e.M is a
real symmetric matrix with eigenvaluesl1, l2, l3.
(a) l1, l2, l3 are all distinct. The corresponding FPE has solution 1 only from the above

list. The new coordinatesω1, ω2, ω3 are given implicitly by the formula
Ex = T H(t)Ez( Eω) + Ew(t) (33)

whereEz( Eω) is given by formula 1 from (13),Ew(t) is solution of system of ODEs (22)
and

H(t) =
(
c1el1t 0 0

0 c2el2t 0
0 0 c3el3t

)
(34)

with arbitrary constantsc1, c2, c3.
(b) l1 = l2 6= l3. The corresponding FPE has solutions 1–4 only from the above list. The

new coordinatesω1, ω2, ω3 are given implicitly by (33), whereEz( Eω) is given by one of
the formulae 1–4 from (13) andH(t) is given by (34) with arbitrary constantc1, c2, c3

satisfying the conditionc1 = c2 for the partially split coordinates 2–4 from (13).
(c) l1 = l2 = l3, i.e.M = l1I , whereI is unit matrix. The corresponding FPE has

all 11 solutions, listed above. The new coordinatesω1, ω2, ω3 are given implicitly
by formula (33), whereEz( Eω) is given by one of the 11 formulae (13) andH(t) is
given by (34) with arbitrary constantsc1, c2, c3 satisfying the conditionc1 = c2 for
the partially split coordinates 2–4 from (13) and the conditionc1 = c2 = c3 for the
non-split coordinates 5–11 from (13).

(2)

M = b C1

( 0 coss 0
− coss 0 sins

0 − sins 0

)
C−1

1 + l1I

whereI is the unit matrix andC1 is an arbitrary constant 3× 3 orthogonal matrix,b, s, l1
are arbitrary constants andb 6= 0. The corresponding FPE has all 11 solutions, listed
above withl1 = l2 = l3. The new coordinatesω1, ω2, ω3 are given implicitly by formula
(11), whereEz( Eω) is given by one of the 11 formulae (13),T (t) is given by (26), (27),Ew(t)
is solution of system of ODEs (22) and

H(t) = exp(l1t)

(
c1 0 0
0 c2 0
0 0 c3

)
with arbitrary constantsc1, c2, c3 satisfying the conditionc1 = c2 for the partially split
coordinates 2–4 from (13) and the conditionc1 = c2 = c3 for non-split coordinates 5–11
from (13).

(3)

M = C1

( 1
2(l1 + l3 + (l1− l3) cos 2s) b coss 1

2(l3− l1) sin 2s
−b coss l1 b sins

1
2(l3− l1) sin 2s −b sins 1

2(l1 + l3− (l1− l3) cos 2s)

)
C−1

1

whereC1 is an arbitrary constant 3×3 orthogonal matrix,b, s, l1, l2 are arbitrary constants,
l1 6= l3 andb 6= 0. The corresponding FPE has solutions 1–4 only from the above list
with l1 = l2 6= l3. The new coordinatesω1, ω2, ω3 are given implicitly by formula (11),
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whereEz( Eω) is given by one of the formulae 1–4 from (13),T (t) is given by (26), (27) and
(iii) from (31), Ew(t) is solution of system of ODEs (22) and

H(t) =
(
c1el1t 0 0

0 c2el1t 0
0 0 c3el3t

)

with arbitrary constantsc1, c2, c3 satisfying the conditionc1 = c2 for the partially split
coordinates 2–4 from (13).

Note that the above-obtained solutions can be used as the basis functions to expand an
arbitrary smooth solution of the equation under study in a properly chosen Hilbert space (for
more details, see [6]).

The physical analysis of the obtained results seems to be very interesting, but the detailed
study of this problem goes beyond the scope of the present paper.

4. R-separation of variables in the Fokker–Planck equation

In this paper, we restrict ourselves to the choice of separation ansatz in the form (2). Generally
speaking, the problem of separation of variables includes the search ofR-separablesolutions
of the more general form [6]

u(t, Ex) = eR(t,Ex)ϕ0(t)

3∏
a=1

ϕa(ωa(t, Ex), Eλ). (35)

In this case we have an analogue of the system of equations (9), (10)(
2
∂R

∂xj
+Bj

)
∂ωa

∂xj
+
∂ωa

∂t
+1ωa = 0 a = 1, 2, 3 (36)

3∑
i=1

Fi0(ωi)
∂ωi

∂xj

∂ωi

∂xj
+
∂R

∂t
+1R +Ba

∂R

∂xa
+
∂R

∂xa

∂R

∂xa
+ T0(t) +

∂Ba

∂xa
= 0. (37)

Equations (7), (8) are not changed. In a way analogous to that used above we get from (36)
the form of the drift coefficientsEB(Ex)

EB(Ex) =M(t)(Ex − Ew) + Ėw − 2E∇R (38)

whereM(t) is given by formula (19).
The compatibility conditions of the above system of PDEs (38) yield

B1x2 − B2x1 = −2(α̇ + β̇ cosγ )
B1x3 − B3x1 = −2(β̇ cosα sinγ − γ̇ sinα)
B2x3 − B3x2 = −2(β̇ sinα sinγ + γ̇ cosα).

(39)

As the functionsB1, B2, B3 are independent oft , it follows from these conditions that
rot EB = Econst and the functionsα(t), β(t), γ (t) obey the system of ODEs (25). Thus the
matrixT (t) have the form (26).

Consequently the following assertion holds true.

Theorem 2. For the Fokker–Planck equation (1) to beR-separable it is necessary that the
rotor of the drift velocity vectorEB(Ex) is constant.
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5. Concluding remarks

It follows from theorem 1 that the choice of the drift coefficientsEB(Ex) allowing for variable
separation in the corresponding FPE is very restricted. Namely, they should be linear in the
spatial variablesx1, x2, x3 in order to provide separability of FPE (1) into three second-order
ODEs. However, if we allow for separation equations to be of lower order, then additional
possibilities for variable separation in FPE arise. As an example, we give the drift coefficients

B1(Ex) = 0 B2(Ex) = 0 B3(Ex) = B3

(√
x2

1 + x2
2

)
whereB3 is arbitrary smooth function. FPE (1) with these drift coefficients separates in the

cylindrical coordinate systemt, ω1 = ln(
√
x2

1 + x2
2), ω2 = arctan(x1/x2), ω3 = x3 into two

first-order and one second-order ODEs.
For the one-dimensional FPE, the choice of the drift coefficientsEB(Ex)allowing for variable

separation is essentially wider [4].
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